
 

Bits, bytes and buts 
Data manipulation In Vuo 
 

Manipulating raw data in Vuo can open up a whole lot of options, but at the same time it can be a bit 

confusing to get a grip on the bytes when first looking at it. 

Computers at their base level can be seen as sets of switches that can change based on other sets of 

switches. In their natural language things are either on or off – or 0 or 1. This is called binary or base-

2 as it involves only two things. Each of these “switches” are then what we refer to as bits. Counting 

to only 1 is for the most part not too interesting in most cases however, so a clever trick is to use 

several bits to count to large numbers. 

The way to do this is to think of the maximum number of combinations you can have with a set 

number of bits. With one bit you have two options 0 or 1. With two bits however, you have four 

options; 00 01 10 11. Adding one more bit (3) now suddenly gives us eight different options; 000 001 

011 111 110 100 101 010. From this, we can see that for every bit we add, we raise the maximum 

number of options by two to the power of the number of bits (2 ^ nBits). These sets of bits are then 

what we refer to as bytes. While bytes have been sets of bits of varying sizes, the standard byte size 

usually is 8-bits, and for the most part mandated by hardware (this can also be called an octet, but 

for the purpose of this tutorial a byte will equal 8 bits). 

By raising 2 to the power of 8 we get 256. While not a tiny number, it isn’t really that large either. So, 

to deal with this, we can combine bytes to get larger numbers. This is where things can become a bit 

awkward. Computers on a hardware level organizes bits into bytes, but the way they read and 

calculate them can differ a bit. Some computers read from left to right, others from right to left. This 

is called Endianness which there is two of. Big-endian is how humans mostly count where the most 

significant byte (largest number) comes first. 1234 = one thousand two hundred and thirty-four for 

humans. The Little-endian way reverses that and puts the least significant byte (smallest number) 

first. 4321 = one thousand two hundred and thirty-four for humans. This can be both hardware, 

platform and format specific, so you will have to read the specifications for what you want to do to 

place the bytes in the right order. 

 Getting in to Vuo to get more practical with this, we can add a “Fetch data” node, and drag an audio 

file over to its input port. I generated a 400Hz sine wave at audiocheck.net to have something simple, 

standard-conforming and relatively pleasant to work with. I also found an overview of the WAVE 

format specification at soundfile.sapp.org which I could remake an overview of the header from 

(Figure 1). With these things we can start pulling apart the raw data in Vuo to use it how we want. 

 

 

Endianness Byte offset Name Byte size Should contain Type 

Big 0 Chunk ID 4 ASCII: RIFF Riff chunk descriptor 

Little 4 Chunk Size 4 File size - 8 bytes  

Big 8 Format 4 ASCII: WAVE  

Big 12 Sub-chunk 1 ID 4 ASCII: fmt Fmt sub-chunk 

Little 16 Sub-chunk 1 Size 4 Size of remaining sub-chunk  

Little 20 Audio format 2 Integer  

Little 22 Num channels 2 Integer  

Little 24 Sample rate 4 Integer  

Little 28 Byte rate 4 Integer  

Little 32 Block align 2 Integer  

Little 34 Bits per sample 2 Integer  

Big 36 Sub-chunk 2 ID 4 ASCII: data Data sub-chunk 

Little 40 Sub-chunk 2 Size 4 File size - header  

Little 44 Data =Sub-chunk 2 Size The data   

Figure 1 – RIFF WAVE file specification 

https://www.audiocheck.net/audiofrequencysignalgenerator_sinetone.php
http://soundfile.sapp.org/doc/WaveFormat/


Using a “Cut Data” node we can 

start by checking if the header is a 

valid RIFF file by looking at the first 

Chunk-ID contained in the first 4 

bytes. Note that the Byte offset in 

the above table is 0-based, whereas 

the listing in Vuo starts at 1, 

meaning that we will have to add 1 

to the offset to get the correct byte 

position. 

To check what format RIFF file it is, 

we can check the 4 bytes starting at byte 9 which should display “WAVE” (Figure 3). 

The ASCII descriptors are big-endian 

and can be put straight into a 

“Convert Data to Text” node to 

quickly check this. From the table 

above we can see that these 4 bytes 

should convert to an ASCII string 

equaling “RIFF” which it does in my 

case. From the soundfile.sapp.org 

site, we can see that this could have a 

value of “RIFX” as well that would 

indicate the file is big-endian. 

To get an understandable output from the integer data we will have to do a bit of math. Now we get 

to the part of combining bytes to translate it into a number that can give meaning to us and be 

verified through checking what these should be. For a 4-byte number simply adding 256 four times 

only gets us to 1024. Knowing that 4 bytes are 32 bits, what we would expect is 4,294,967,296 which 

is slightly larger. The operations themselves are pretty easy but keeping the endianness in mind is 

important. 

If we cut the data at byte 5 and take the 4 following bytes representing the file-size according to the 

specification, we can use the “Get Data Bytes” node to get a list of 4 integers. Since these should be 

little-endian, we know that the first item in the list is the lowest number. The output of this can be 

sent straight to an “Add” node. 

For the next three outputs, we have to think more of what they represent than what they just 

output. Each item in list number two will then represent the maximum of list number one, each item 

in list number three will represent the maximum of list number two and so on. In practice, this 

means that list item two will have to be multiplied with 256, list item three will have to be multiplied 

with 256 * 256 = 65,536, and list item 4 will have to be multiplied with 65,536 * 256 = 16,777,216. 

Figure 2 – Check for valid RIFF file 

Figure 3 – Check the RIFF format 

Figure 4 – Calculating the integer value of 4-bytes 



Please note that this is not how these calculations normally are done in an application, but for 

smaller and non-continuous number sets it shouldn’t be much of an issue. With that said, we can 

now check to see if our reported file size in Vuo matches that of the operating system. 

Looking at file info in Finder we see 

that the reported size is 264,646 

bytes and Vuo reports 264,638 

(Figure 5). By the specifications we 

can see that the chunk size reports 

the file size minus the 4 bytes for 

the chunk header, and minus 4 

bytes for the chunk size itself. 

Adding 8 bytes to the reported size in Vuo then matches the file size. Having confirmed that our 

calculations now work and produce the expected result, it can be applied to the rest of the data 

segments in the header. 

Packing the byte to integer conversion into a sub-composition makes for easy re-use of it where 

applicable. As there are some two-byte numbers as well in the specification, you can just copy and 

remove the unnecessary multiplications and wrap it into its own sub-composition. This isn’t strictly 

necessary, but it makes for a good exercise to check your understanding of the byte summation. 

With a bit of noodling you (Figure 6) can 

then pack out all the info from the header 

into a readable format and pipe it to the 

console. What this also enables is 

automation of narrowing down the data 

to what you want from it. 

If we now want to visualize the waveform 

from the file, we can look at what data is 

relevant, and how to separate it out. 

Going back to the specification we see 

that the data itself starts with a byte 

offset of 44. This means in Vuo terms that 

we have to look at byte 45 as Vuo’s lists 

starts at 1. Furthermore, we see from the 

specification that the bytes for the Sub-

chunk 2 Size gives the length of the data 

after the header to the end of the file. 

Using a “Cut Data” node with a Start Byte 

of 45, and a Byte Count from Sub-chunk 2 

Size will then narrow down the data to 

only the part we need – the audio bit. 

Since there is no way to split or narrow 

down data other than via the “Cut Data” 

node, we will have to use the “Get Data 

Bytes” node to convert the data into a list. 

As this can get quite overwhelming to 

work with, publishing relevant ports and 

packing the header info into a sub-

composition seems like a sane way to 

handle it.  

With our header text published along with 

Num Channels, Sample Rate, Byte Rate, 

Figure 5 - Checking with the OS to make sure the calculation is correct 

Figure 6 – Structuring the header and extracting information from it 



Bits Per Sample and the Audio Data 

itself, we get a much cleaner 

composition as a starting point to our 

waveform visualization (Figure 7). The 

“Display Console Window” node is not 

strictly needed anymore as we now just 

need to press on the output port to get a 

display of the values. Just make sure to 

not leave it in the sub-composition. 

Adding a “Get Data Bytes” to the Audio 

Data port now presents us with a list of 

all the bytes from the audio file that we 

can start to filter down. For the file I’m 

using here which is a mono 16-bit file, there isn’t more to it than the 2 coarse and fine bytes per 

sample. To merge this down to a stream of usable data, we can use list manipulators like “Comb List” 

or “Deinterleave List” depending on your wanted outcome and resolution.  

Figure 8 shows two ways to get some data from the audio file to visualize. In the upper “low 

resolution” approach (tangerine), we get rid of the detail-byte by skipping the first byte in the list 

with a “Take from List” node. Then it effectively skips all the other detail bytes with a “Comb List” 

node that picks the first byte in the list (coarse) and then skips the next (fine) and so on. This will give 

a vertical resolution of 256 levels that should be enough for many applications where you don’t use it 

at the full screens’ height or at a resolution below 256pixels. 

The second option deinterleaves or splits the list in two giving us a list of the least significant byte, 

and a list of the most significant byte. The most significant byte is then multiplied with 256 and 

added back to the least significant byte like how we previously calculated the byte values in the 

header. This gives us a value range in the final list of 65,536 which should be enough for even the 

most high-resolution displays used today. 

If the audio file has multiple channels like in a stereo audio file, the channel count will also come in to 

play.  Setting up a diagram of the byte output shows that to perform the previous operations on a 

two-channel audio file requires an additional deinterleave list after the initial filtering (figure 9). 

 

Figure 8 – Cleaning up the composition by using a sub-composition to 
extract the header 

Figure 7 – Different approaches to extract the Data Bytes into something useful 

Figure 9 – Diagram of the byte output in a 2-channel WAVE file 



Having sorted out the data and calculated base values from it, we now need to fit it into Vuo’s 

coordinate system. As this has a center of 0,0(,0) it would be nice to center our data around this 

point. In addition, with a normalized range in height of 2 (-1 to 1) for 2D graphics, 256 would quickly 

blow out of proportions, not to speak of 65,536. To deal with this, we need to do some scaling.  

Unfortunately, the “Scale List” node in Vuo only applies a scale factor and does not provide a way to 

set minimum and maximum values for the output. Fortunately, we can use the “Calculate List” to 

deal with this. Unfortunately, the calculation to do so includes a huge amount of repetition of terms 

and signs. Fortunately for the more mathematically challenged of us, we can always look up how to 

wrap value into range [min, max] without division. 

Looking at LSemi’s answer at stackoverflow.com, we can set up a general calculation like this: 

x = (((x - x_min) % (x_max - x_min)) + (x_max - x_min)) % (x_max - x_min) + x_min 
 
We do need to change it a bit though. Firstly, X is out of range, so we’ll have to normalize the input 
value to a 0 – 1 range. To do this we can calculate ((height / X_max) * X). We can put this in place of 
x in the full calculation. Since we also don’t need separate min/max values as we always can translate 
it later, the min value can be set to the negative max value, or -Height. If we also want this to 
conform to screen/layer/object height to pull it from other objects, we need to use (Height/2) in 
place of the min/max values in the calculation. When all of that is done, we end up with this horrible 
thing: 
 
 
 
 
 
After putting it into a “Calculate List” node, connecting it up and washing our hands we finally have 
something that should give us an output that’s slightly more fun than this tutorial… 

…two bars. 
 
To be fair, if I had used something else than a pure sine wave it would probably be a slight bit more 
jagged. Apart from if it was from some popular music genres, then it would probably look a lot the 
same. Nevertheless, we have completely disregarded the length of the waveform in relation to the 
pixels we use on screen. To get the representation of the waveform we want, we have to take the 
cycle into consideration. With a sine wave at 400Hz, this will oscillate between min and max 200 
times per second (0 to max/min per cycle). That means that to have a chance to see something 
resembling the form, you would have to have at least a width of 800 pixels to have a chance at 
something resembling a 1-pixel wide line oscillate. 
 
As we only need to represent the idea of the waveform though, we can cut drastically down on the 
displayed time of the waveform. Knowing that the cycle is repeating 400 times per second (400Hz), 
we can then divide 44,100 (our sample rate per second) by 400 to get 110.25. If the list then is cut 

(((((Height/ 255) * X) - (-(Height/2))) % ((Height/2) - (-(Height/2)))) +  

((Height/2) - (-(Height/2)))) %  

((Height/2) - (-(Height/2))) +  

(-(Height/2)) 

Figure 10 – This is what happens when you ignore the Time Lord 

https://stackoverflow.com/questions/14415753/wrap-value-into-range-min-max-without-division


from the “Get Data Bytes” node at 110 items, a single wave cycle should appear. To make it even a 
bit wavier, and make it add up with the list index, the list can be cut at 441. That should give 4 cycles 
of two peaks and two valleys. Experimenting and playing around with what works for your 

application here should 
be done. In some 
instances, a short 
timespan like this will 
work, in others some 
tweaking may be in order 
to convey the image you 
want. 
 
By closer inspection, the 
difference in detail 
between the two lists can 
now be seen (Figure 12). 
The tangerine line coming 
from the coarse data is a 

bit more jagged or quantized in its appearance. How noticeable that is in the final application 
depends on a lot of factors. 
If it matters is up to you to 
decide. 
 
This is of course only 
scratching the surface. Being 
objects, this can be used in 
3D applications. Animation 
can be done by shifting the 
starting point of the “Cut 
List” node, or by using some 
of the weirder tools in for 
instance MM.ListTools in the 
Node Gallery (to shamelessly 
self-promote). Combination 
with other geometry and 
wrapping around objects 
could also be an option. In a broader view, extracting data this way is not limited to audio files, and 
perhaps poking around with different data structures can produce interesting results. The base 
concepts about bits and bytes are the foundation of computing as we still know it and will not change 
much. What can you create from this? 
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Figure 11 – Zooming in on a short timespan 

Figure 12 - Comparison of detail in differently extracted data sets 


